HDR-Project

记录HDR开发过程中的一些细节

FLAGS

2018-12-28 11:15:43, [data_augmentation_size] : 8
2018-12-28 11:15:43, [data_compute_dtype] : <class 'numpy.float32'>
2018-12-28 11:15:43, [data_csr_buffer_size] : 1500
2018-12-28 11:15:43, [data_image_channel] : 3
2018-12-28 11:15:43, [data_image_size] : 512
2018-12-28 11:15:43, [data_input_dtype] : <class 'numpy.uint8'>
2018-12-28 11:15:43, [data_input_ext] : .tif
2018-12-28 11:15:43, [data_label_dtype] : <class 'numpy.uint8'>
2018-12-28 11:15:43, [data_test_image_count] : 498
2018-12-28 11:15:43, [data_train_batch_count] : 6000
2018-12-28 11:15:43, [data_train_batch_size] : 3
2018-12-28 11:15:43, [data_train_image_count_input] : 2250
2018-12-28 11:15:43, [data_train_image_count_label] : 627
2018-12-28 11:15:43, [data_train_sample_count_input] : 18000
2018-12-28 11:15:43, [data_train_sample_count_label] : 5016
2018-12-28 11:15:43, [data_use_random_pad] : False
2018-12-28 11:15:43, [folder_csrs] : /data/LPGAN/csrs/
2018-12-28 11:15:43, [folder_csrs_rgb] : /data/LPGAN/csrs_rgb/
2018-12-28 11:15:43, [folder_input] : /data/LPGAN/input/
2018-12-28 11:15:43, [folder_label] : /data/LPGAN/label/
2018-12-28 11:15:43, [folder_label_HDR] : /data/LPGAN/label_HDR/
2018-12-28 11:15:43, [folder_log] : /data/LPGAN-Result/736-DGX-LPGAN/log/
2018-12-28 11:15:43, [folder_model] : /data/LPGAN-Result/736-DGX-LPGAN/model/
2018-12-28 11:15:43, [folder_test_csrs] : /data/LPGAN/csrs/
2018-12-28 11:15:43, [folder_test_img] : /data/LPGAN-Result/736-DGX-LPGAN/test_img/
2018-12-28 11:15:43, [folder_test_netG_loss] : /data/LPGAN-Result/736-DGX-LPGAN/test_netG_loss/
2018-12-28 11:15:43, [folder_test_netG_psnr1] : /data/LPGAN-Result/736-DGX-LPGAN/test_netG_psnr1/
2018-12-28 11:15:43, [folder_test_netG_psnr2] : /data/LPGAN-Result/736-DGX-LPGAN/test_netG_psnr2/
2018-12-28 11:15:43, [folder_train_ind_input] : /data/LPGAN-Result/736-DGX-LPGAN/train_ind_input/
2018-12-28 11:15:43, [folder_train_ind_label] : /data/LPGAN-Result/736-DGX-LPGAN/train_ind_label/
2018-12-28 11:15:43, [folder_train_netG_loss] : /data/LPGAN-Result/736-DGX-LPGAN/train_netG_loss/
2018-12-28 11:15:43, [folder_weight] : /data/LPGAN-Result/736-DGX-LPGAN/weight/
2018-12-28 11:15:43, [format_log_step] : %.3f
2018-12-28 11:15:43, [format_log_value] : {:6.4f}
2018-12-28 11:15:43, [load_model_need] : False
2018-12-28 11:15:43, [load_model_path] : /data/LPGAN-Result/000-DGX-LPGAN/model/0.000.ckpt
2018-12-28 11:15:43, [load_path] : /data/LPGAN-Result/000-DGX-LPGAN/
2018-12-28 11:15:43, [load_previous_epoch] : 0
2018-12-28 11:15:43, [load_previous_exp] : 0
2018-12-28 11:15:43, [load_train_indices_input_path] : /data/LPGAN-Result/000-DGX-LPGAN/train_ind_input/0.000.txt
2018-12-28 11:15:43, [load_train_indices_label_path] : /data/LPGAN-Result/000-DGX-LPGAN/train_ind_label/0.000.txt
2018-12-28 11:15:43, [load_train_loss_path] : /data/LPGAN-Result/000-DGX-LPGAN/train_netG_loss/0.000.txt
2018-12-28 11:15:43, [loss_constant_term] : l2
2018-12-28 11:15:43, [loss_constant_term_use_local_weight] : False
2018-12-28 11:15:43, [loss_constant_term_weight] : 10000.0
2018-12-28 11:15:43, [loss_data_term_use_local_weight] : False
2018-12-28 11:15:43, [loss_heavy] : True
2018-12-28 11:15:43, [loss_photorealism_is_our] : True
2018-12-28 11:15:43, [loss_pr] : False
2018-12-28 11:15:43, [loss_source_data_term] : l2
2018-12-28 11:15:43, [loss_source_data_term_weight] : 1000.0
2018-12-28 11:15:43, [loss_wgan_gp_bound] : 0.05
2018-12-28 11:15:43, [loss_wgan_gp_mv_decay] : 0.99
2018-12-28 11:15:43, [loss_wgan_gp_times] : 1
2018-12-28 11:15:43, [loss_wgan_gp_use_all] : False
2018-12-28 11:15:43, [loss_wgan_lambda] : 10
2018-12-28 11:15:43, [loss_wgan_lambda_grow] : 2.0
2018-12-28 11:15:43, [loss_wgan_lambda_ignore] : 1
2018-12-28 11:15:43, [loss_wgan_use_g_to_one] : False
2018-12-28 11:15:43, [method] : WGAN-v24-cycleganD2
2018-12-28 11:15:43, [mode_use_debug] : False
2018-12-28 11:15:43, [netD_base_learning_decay] : 75
2018-12-28 11:15:43, [netD_base_learning_decay_epoch] : 75
2018-12-28 11:15:43, [netD_base_learning_rate] : 1e-05
2018-12-28 11:15:43, [netD_buffer_times] : 50
2018-12-28 11:15:43, [netD_init_method] : var_scale
2018-12-28 11:15:43, [netD_init_times] : 0
2018-12-28 11:15:43, [netD_init_weight] : 0.001
2018-12-28 11:15:43, [netD_mat] : /data/LPGAN-Result/736-DGX-LPGAN/736-netD.mat
2018-12-28 11:15:43, [netD_regularization_weight] : 0
2018-12-28 11:15:43, [netD_times] : 50
2018-12-28 11:15:43, [netD_times_grow] : 1
2018-12-28 11:15:43, [netG_base_learning_decay] : 75
2018-12-28 11:15:43, [netG_base_learning_decay_epoch] : 75
2018-12-28 11:15:43, [netG_base_learning_rate] : 1e-05
2018-12-28 11:15:43, [netG_init_method] : var_scale
2018-12-28 11:15:43, [netG_init_weight] : 0.001
2018-12-28 11:15:43, [netG_mat] : /data/LPGAN-Result/736-DGX-LPGAN/736-netG.mat
2018-12-28 11:15:43, [netG_regularization_weight] : 0
2018-12-28 11:15:43, [net_gradient_clip_value] : 100000000.0
2018-12-28 11:15:43, [num_exp] : 736
2018-12-28 11:15:43, [num_gpu] : 4
2018-12-28 11:15:43, [path_char] : /
2018-12-28 11:15:43, [path_data] : /data/LPGAN
2018-12-28 11:15:43, [path_result] : /data/LPGAN-Result/736-DGX-LPGAN
2018-12-28 11:15:43, [path_result_root] : /data/LPGAN-Result/%03d-DGX-LPGAN
2018-12-28 11:15:43, [process_epoch] : 0
2018-12-28 11:15:43, [process_load_test_batch_capacity] : 32
2018-12-28 11:15:43, [process_load_train_batch_capacity] : 64
2018-12-28 11:15:43, [process_max_epoch] : 150
2018-12-28 11:15:43, [process_random_seed] : 2
2018-12-28 11:15:43, [process_run_first_testing_epoch] : True
2018-12-28 11:15:43, [process_test_drop_summary_step] : 1
2018-12-28 11:15:43, [process_test_log_interval_epoch] : 2
2018-12-28 11:15:43, [process_train_data_loader_count] : 2
2018-12-28 11:15:43, [process_train_drop_summary_step] : 5
2018-12-28 11:15:43, [process_train_log_interval_epoch] : 20
2018-12-28 11:15:43, [process_write_test_img_count] : 498
2018-12-28 11:15:43, [sys_is_dgx] : True
2018-12-28 11:15:43, [sys_use_all_gpu_memory] : True
2018-12-28 11:15:43, [sys_use_unix] : True
2018-12-28 11:15:43, [txt_log] : /data/LPGAN-Result/736-DGX-LPGAN/736-log.txt
2018-12-28 11:15:43, [txt_test] : /data/LPGAN/test.txt
2018-12-28 11:15:43, [txt_train_input] : `/data/LPGAN/train_input.txt`
2018-12-28 11:15:43, [txt_train_label] : /data/LPGAN/train_label.txt

ARCHITECTURE

2018-12-28 11:10:35, [netG] architecture_log :
2018-12-28 11:10:50, ========== net_name = netG_1 ==========
2018-12-28 11:10:54, [ input][ 0] : ( 3, 512, 512, 3)
2018-12-28 11:10:58, [ conv][ 1] : ( 3, 512, 512, 16)
2018-12-28 11:10:59, [ selu][ 2] : ( 3, 512, 512, 16)
2018-12-28 11:11:00, [ bn][ 3] : ( 3, 512, 512, 16)
2018-12-28 11:11:01, [ conv][ 4] : ( 3, 256, 256, 32)
2018-12-28 11:11:01, [ selu][ 5] : ( 3, 256, 256, 32)
2018-12-28 11:11:02, [ bn][ 6] : ( 3, 256, 256, 32)
2018-12-28 11:11:02, [ conv][ 7] : ( 3, 128, 128, 64)
2018-12-28 11:11:04, [ selu][ 8] : ( 3, 128, 128, 64)
2018-12-28 11:11:05, [ bn][ 9] : ( 3, 128, 128, 64)
2018-12-28 11:11:05, [ conv][ 10] : ( 3, 64, 64, 128)
2018-12-28 11:11:06, [ selu][ 11] : ( 3, 64, 64, 128)
2018-12-28 11:11:06, [ bn][ 12] : ( 3, 64, 64, 128)
2018-12-28 11:11:07, [ conv][ 13] : ( 3, 32, 32, 128)
2018-12-28 11:11:07, [ selu][ 14] : ( 3, 32, 32, 128)
2018-12-28 11:11:09, [ bn][ 15] : ( 3, 32, 32, 128)
2018-12-28 11:11:17, ========== net_name = netG_2 ==========
2018-12-28 11:11:18, [ input][ 15] : ( 3, 32, 32, 128)
2018-12-28 11:11:18, [ conv][ 16] : ( 3, 16, 16, 128)
2018-12-28 11:11:19, [ selu][ 17] : ( 3, 16, 16, 128)
2018-12-28 11:11:20, [ bn][ 18] : ( 3, 16, 16, 128)
2018-12-28 11:11:20, [ conv][ 19] : ( 3, 8, 8, 128)
2018-12-28 11:11:21, [ selu][ 20] : ( 3, 8, 8, 128)
2018-12-28 11:11:22, [ bn][ 21] : ( 3, 8, 8, 128)
2018-12-28 11:11:22, [ conv][ 22] : ( 3, 1, 1, 128)
2018-12-28 11:11:23, [ selu][ 23] : ( 3, 1, 1, 128)
2018-12-28 11:11:23, [ conv][ 24] : ( 3, 1, 1, 128)
2018-12-28 11:11:24, ========== net_name = netG_3 ==========
2018-12-28 11:11:25, [ input][ 15] : ( 3, 32, 32, 128)
2018-12-28 11:11:25, [ conv][ 25] : ( 3, 32, 32, 128)
2018-12-28 11:11:26, [ g_concat][ 26] : ( 3, 32, 32, 256), use index [ 24] : ( 3, 1, 1, 128)
2018-12-28 11:12:12, [ conv][ 27] : ( 3, 32, 32, 128)
2018-12-28 11:12:13, [ selu][ 28] : ( 3, 32, 32, 128)
2018-12-28 11:12:15, [ bn][ 29] : ( 3, 32, 32, 128)
2018-12-28 11:12:16, [ conv][ 30] : ( 3, 32, 32, 128)
2018-12-28 11:12:18, [ resize][ 31] : ( 3, 64, 64, 128)
2018-12-28 11:12:18, [ concat][ 32] : ( 3, 64, 64, 256), use index [ 10] : ( 3, 64, 64, 128)
2018-12-28 11:12:19, [ selu][ 33] : ( 3, 64, 64, 256)
2018-12-28 11:12:19, [ bn][ 34] : ( 3, 64, 64, 256)
2018-12-28 11:12:20, [ conv][ 35] : ( 3, 64, 64, 128)
2018-12-28 11:12:21, [ resize][ 36] : ( 3, 128, 128, 128)
2018-12-28 11:12:21, [ concat][ 37] : ( 3, 128, 128, 192), use index [ 7] : ( 3, 128, 128, 64)
2018-12-28 11:12:22, [ selu][ 38] : ( 3, 128, 128, 192)
2018-12-28 11:12:23, [ bn][ 39] : ( 3, 128, 128, 192)
2018-12-28 11:12:24, [ conv][ 40] : ( 3, 128, 128, 64)
2018-12-28 11:12:24, [ resize][ 41] : ( 3, 256, 256, 64)
2018-12-28 11:12:25, [ concat][ 42] : ( 3, 256, 256, 96), use index [ 4] : ( 3, 256, 256, 32)
2018-12-28 11:12:26, [ selu][ 43] : ( 3, 256, 256, 96)
2018-12-28 11:12:42, [ bn][ 44] : ( 3, 256, 256, 96)
2018-12-28 11:12:43, [ conv][ 45] : ( 3, 256, 256, 32)
2018-12-28 11:12:44, [ resize][ 46] : ( 3, 512, 512, 32)
2018-12-28 11:12:44, [ concat][ 47] : ( 3, 512, 512, 48), use index [ 1] : ( 3, 512, 512, 16)
2018-12-28 11:12:45, [ selu][ 48] : ( 3, 512, 512, 48)
2018-12-28 11:12:46, [ bn][ 49] : ( 3, 512, 512, 48)
2018-12-28 11:12:47, [ conv][ 50] : ( 3, 512, 512, 16)
2018-12-28 11:12:47, [ selu][ 51] : ( 3, 512, 512, 16)
2018-12-28 11:12:49, [ bn][ 52] : ( 3, 512, 512, 16)
2018-12-28 11:12:50, [ conv][ 53] : ( 3, 512, 512, 3)
2018-12-28 11:12:50, [ res][ 54] : ( 3, 512, 512, 3), use index [ 0] : ( 3, 512, 512, 3)
2018-12-28 11:12:51, ========== net_name = netG_1 ==========
2018-12-28 11:12:51, [ input][ 0] : ( 3, 512, 512, 3)
2018-12-28 11:12:51, [ conv][ 1] : ( 3, 512, 512, 16)
2018-12-28 11:12:52, [ selu][ 2] : ( 3, 512, 512, 16)
2018-12-28 11:12:52, [ bn][ 3] : ( 3, 512, 512, 16)
2018-12-28 11:12:52, [ conv][ 4] : ( 3, 256, 256, 32)
2018-12-28 11:12:53, [ selu][ 5] : ( 3, 256, 256, 32)
2018-12-28 11:12:53, [ bn][ 6] : ( 3, 256, 256, 32)
2018-12-28 11:12:53, [ conv][ 7] : ( 3, 128, 128, 64)
2018-12-28 11:12:54, [ selu][ 8] : ( 3, 128, 128, 64)
2018-12-28 11:12:54, [ bn][ 9] : ( 3, 128, 128, 64)
2018-12-28 11:12:54, [ conv][ 10] : ( 3, 64, 64, 128)
2018-12-28 11:12:55, [ selu][ 11] : ( 3, 64, 64, 128)
2018-12-28 11:12:55, [ bn][ 12] : ( 3, 64, 64, 128)
2018-12-28 11:12:56, [ conv][ 13] : ( 3, 32, 32, 128)
2018-12-28 11:12:56, [ selu][ 14] : ( 3, 32, 32, 128)
2018-12-28 11:13:17, [ bn][ 15] : ( 3, 32, 32, 128)
2018-12-28 11:13:17, ========== net_name = netG_2 ==========
2018-12-28 11:13:18, [ input][ 15] : ( 3, 32, 32, 128)
2018-12-28 11:13:18, [ conv][ 16] : ( 3, 16, 16, 128)
2018-12-28 11:13:19, [ selu][ 17] : ( 3, 16, 16, 128)
2018-12-28 11:13:19, [ bn][ 18] : ( 3, 16, 16, 128)
2018-12-28 11:13:19, [ conv][ 19] : ( 3, 8, 8, 128)
2018-12-28 11:13:20, [ selu][ 20] : ( 3, 8, 8, 128)
2018-12-28 11:13:20, [ bn][ 21] : ( 3, 8, 8, 128)
2018-12-28 11:13:23, [ conv][ 22] : ( 3, 1, 1, 128)
2018-12-28 11:13:23, [ selu][ 23] : ( 3, 1, 1, 128)
2018-12-28 11:13:23, [ conv][ 24] : ( 3, 1, 1, 128)
2018-12-28 11:13:24, ========== net_name = netG_3 ==========
2018-12-28 11:13:24, [ input][ 15] : ( 3, 32, 32, 128)
2018-12-28 11:13:24, [ conv][ 25] : ( 3, 32, 32, 128)
2018-12-28 11:13:25, [ g_concat][ 26] : ( 3, 32, 32, 256), use index [ 24] : ( 3, 1, 1, 128)
2018-12-28 11:13:25, [ conv][ 27] : ( 3, 32, 32, 128)
2018-12-28 11:13:26, [ selu][ 28] : ( 3, 32, 32, 128)
2018-12-28 11:13:26, [ bn][ 29] : ( 3, 32, 32, 128)
2018-12-28 11:13:26, [ conv][ 30] : ( 3, 32, 32, 128)
2018-12-28 11:13:27, [ resize][ 31] : ( 3, 64, 64, 128)
2018-12-28 11:13:27, [ concat][ 32] : ( 3, 64, 64, 256), use index [ 10] : ( 3, 64, 64, 128)
2018-12-28 11:13:27, [ selu][ 33] : ( 3, 64, 64, 256)
2018-12-28 11:13:28, [ bn][ 34] : ( 3, 64, 64, 256)
2018-12-28 11:13:28, [ conv][ 35] : ( 3, 64, 64, 128)
2018-12-28 11:13:28, [ resize][ 36] : ( 3, 128, 128, 128)
2018-12-28 11:13:29, [ concat][ 37] : ( 3, 128, 128, 192), use index [ 7] : ( 3, 128, 128, 64)
2018-12-28 11:13:29, [ selu][ 38] : ( 3, 128, 128, 192)
2018-12-28 11:13:29, [ bn][ 39] : ( 3, 128, 128, 192)
2018-12-28 11:13:30, [ conv][ 40] : ( 3, 128, 128, 64)
2018-12-28 11:13:30, [ resize][ 41] : ( 3, 256, 256, 64)
2018-12-28 11:13:31, [ concat][ 42] : ( 3, 256, 256, 96), use index [ 4] : ( 3, 256, 256, 32)
2018-12-28 11:13:31, [ selu][ 43] : ( 3, 256, 256, 96)
2018-12-28 11:13:31, [ bn][ 44] : ( 3, 256, 256, 96)
2018-12-28 11:13:32, [ conv][ 45] : ( 3, 256, 256, 32)
2018-12-28 11:13:32, [ resize][ 46] : ( 3, 512, 512, 32)
2018-12-28 11:13:32, [ concat][ 47] : ( 3, 512, 512, 48), use index [ 1] : ( 3, 512, 512, 16)
2018-12-28 11:13:33, [ selu][ 48] : ( 3, 512, 512, 48)
2018-12-28 11:13:33, [ bn][ 49] : ( 3, 512, 512, 48)
2018-12-28 11:13:34, [ conv][ 50] : ( 3, 512, 512, 16)
2018-12-28 11:13:34, [ selu][ 51] : ( 3, 512, 512, 16)
2018-12-28 11:13:34, [ bn][ 52] : ( 3, 512, 512, 16)
2018-12-28 11:13:35, [ conv][ 53] : ( 3, 512, 512, 3)
2018-12-28 11:13:35, [ res][ 54] : ( 3, 512, 512, 3), use index [ 0] : ( 3, 512, 512, 3)
2018-12-28 11:13:36, [netD] architecture_log :
2018-12-28 11:13:36, ========== net_name = netD_1 ==========
2018-12-28 11:13:36, [ input][ 0] : ( 3, 512, 512, 3)
2018-12-28 11:13:36, [ conv][ 1] : ( 3, 512, 512, 16)
2018-12-28 11:13:38, [ lrelu][ 2] : ( 3, 512, 512, 16)
2018-12-28 11:13:39, [ in][ 3] : ( 3, 512, 512, 16)
2018-12-28 11:13:39, [ conv][ 4] : ( 3, 256, 256, 32)
2018-12-28 11:13:39, [ lrelu][ 5] : ( 3, 256, 256, 32)
2018-12-28 11:13:40, [ in][ 6] : ( 3, 256, 256, 32)
2018-12-28 11:13:40, [ conv][ 7] : ( 3, 128, 128, 64)
2018-12-28 11:13:41, [ lrelu][ 8] : ( 3, 128, 128, 64)
2018-12-28 11:14:02, [ in][ 9] : ( 3, 128, 128, 64)
2018-12-28 11:14:02, [ conv][ 10] : ( 3, 64, 64, 128)
2018-12-28 11:14:02, [ lrelu][ 11] : ( 3, 64, 64, 128)
2018-12-28 11:14:03, [ in][ 12] : ( 3, 64, 64, 128)
2018-12-28 11:14:03, [ conv][ 13] : ( 3, 32, 32, 128)
2018-12-28 11:14:03, [ lrelu][ 14] : ( 3, 32, 32, 128)
2018-12-28 11:14:04, [ in][ 15] : ( 3, 32, 32, 128)
2018-12-28 11:14:05, [ conv][ 16] : ( 3, 16, 16, 128)
2018-12-28 11:14:05, [ lrelu][ 17] : ( 3, 16, 16, 128)
2018-12-28 11:14:05, [ in][ 18] : ( 3, 16, 16, 128)
2018-12-28 11:14:06, [ conv][ 19] : ( 3, 1, 1, 1)
2018-12-28 11:14:06, [ reduce_mean][ 20] : ( 3)
2018-12-28 11:14:06, ========== net_name = netD_1 ==========
2018-12-28 11:14:07, [ input][ 0] : ( 3, 512, 512, 3)
2018-12-28 11:14:07, [ conv][ 1] : ( 3, 512, 512, 16)
2018-12-28 11:14:07, [ lrelu][ 2] : ( 3, 512, 512, 16)
2018-12-28 11:14:08, [ in][ 3] : ( 3, 512, 512, 16)
2018-12-28 11:14:08, [ conv][ 4] : ( 3, 256, 256, 32)
2018-12-28 11:14:09, [ lrelu][ 5] : ( 3, 256, 256, 32)
2018-12-28 11:14:09, [ in][ 6] : ( 3, 256, 256, 32)
2018-12-28 11:14:09, [ conv][ 7] : ( 3, 128, 128, 64)
2018-12-28 11:14:10, [ lrelu][ 8] : ( 3, 128, 128, 64)
2018-12-28 11:14:10, [ in][ 9] : ( 3, 128, 128, 64)
2018-12-28 11:14:10, [ conv][ 10] : ( 3, 64, 64, 128)
2018-12-28 11:14:11, [ lrelu][ 11] : ( 3, 64, 64, 128)
2018-12-28 11:14:11, [ in][ 12] : ( 3, 64, 64, 128)
2018-12-28 11:14:11, [ conv][ 13] : ( 3, 32, 32, 128)
2018-12-28 11:14:11, [ lrelu][ 14] : ( 3, 32, 32, 128)
2018-12-28 11:14:12, [ in][ 15] : ( 3, 32, 32, 128)
2018-12-28 11:14:12, [ conv][ 16] : ( 3, 16, 16, 128)
2018-12-28 11:14:12, [ lrelu][ 17] : ( 3, 16, 16, 128)
2018-12-28 11:14:12, [ in][ 18] : ( 3, 16, 16, 128)
2018-12-28 11:14:13, [ conv][ 19] : ( 3, 1, 1, 1)
2018-12-28 11:14:13, [ reduce_mean][ 20] : ( 3)
deep-learning-architecture vf_qrestore

Comments

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×